- 0398423373
- donvale.ps@education.vic.gov.au

The most important thing Donvale Primary School has to give our students in the numeracy program is a love and passion for mathematics itself. We gain enormous delight in children viewing the world of numbers as a challenge and with excitement. So much of our society depends on a working ability with numbers from the most manual tasks to those of a far more complex nature. We aim to encourage children to enjoy this facet of their learning which in turn will mean they do achieve at much higher levels than those they originally thought possible.

Through our Numeracy program students gain an understanding and confidence with mathematical concepts, processes and strategies, and the capacity to use these in problem solving.

Mathematical concepts are taught using innovative learning strategies, such as pictorial representation, and real life construction, and expressed through everyday language to develop the child’s ability to recognise maths in everyday situations.

All students are monitored and assessed against the expectations of the Victorian Curriculum.

Mathematics provides students with essential mathematical skills and knowledge in Number and Algebra, Measurement and Geometry, and Statistics and Probability. It develops the numeracy capabilities that all students need in their personal, work and civic life, and provides the fundamentals on which mathematical specialties and professional application of mathematics are built.

At Donvale PS, we aim to ensure that all students:

- are confident, creative users and communicators of mathematics, able to investigate, represent and interpret situations in their personal and work lives and as active citizens
- develop an increasingly sphisticated understanding of mathematical concepts and fluency with processes, and are able to
- pose and solve problems and reason in Number and Algebra, Measurement and Geometry, and Statistics and Probability
- recognise connections between the areas of mathematics and other disciplines and appreciate mathematics as an accessible and enjoyable discipline to study.

Within the Australian Curriculum, Mathematics is organised around the interaction of three content strands and four proficiency strands.

The content strands are Number and Algebra, Measurement and Geometry, and Statistics and Probability. They describe what is to be taught and learnt.

The proficiency strands are Understanding, Fluency, Problem Solving, and Reasoning. They describe how content is explored or developed, that is, the thinking and doing of mathematics. They provide the language to build in the developmental aspects of the learning of mathematics and have been incorporated into the content descriptions of the three content strands described above. This approach has been adopted to ensure students’ proficiency in mathematical skills develops throughout the curriculum and becomes increasingly sophisticated over the levels of schooling.

**Content Strands****Number and Algebra**

Number and Algebra are developed together, as each enriches the study of the other. Students apply number sense and strategies for counting and representing numbers. They explore the magnitude and properties of numbers. They apply a range of strategies for computation and understand the connections between operations. They recognise patterns and understand the concepts of variable and function. They build on their understanding of the number system to describe relationships and formulate generalisations. They recognise equivalence and solve equations and inequalities. They apply their number and algebra skills to conduct investigations, solve problems and communicate their reasoning.

**Measurement and Geometry**

Measurement and Geometry are presented together to emphasise their relationship to each other, enhancing their practical relevance. Students develop an increasingly sophisticated understanding of size, shape, relative position and movement of two-dimensional figures in the plane and three-dimensional objects in space. They investigate properties and apply their understanding of them to define, compare and construct figures and objects. They learn to develop geometric arguments. They make meaningful measurements of quantities, choosing appropriate metric units of measurement. They build an understanding of the connections between units and calculate derived measures such as area, speed and density.

**Statistics and Probability**

Statistics and Probability initially develop in parallel and the curriculum then progressively builds the links between them. Students recognise and analyse data and draw inferences. They represent, summarise and interpret data and undertake purposeful investigations involving the collection and interpretation of data. They assess likelihood and assign probabilities using experimental and theoretical approaches. They develop an increasingly sophisticated ability to critically evaluate chance and data concepts and make reasoned judgments and decisions, as well as building skills to critically evaluate statistical information and develop intuitions about data.

**Proficiency Strands**

The proficiency strands describe the actions in which students can engage when learning and using the content. While not all proficiency strands apply to every content description, they indicate the breadth of mathematical actions that teachers can emphasise. They are represented across and within the Level Descriptions, Content Descriptions and Achievement Standards.

**Understanding**

Students build a robust knowledge of adaptable and transferable mathematical concepts. They make connections between related concepts and progressively apply the familiar to develop new ideas. They develop an understanding of the relationship between the ‘why’ and the ‘how’ of mathematics. Students build understanding when they connect related ideas, when they represent concepts in different ways, when they identify commonalities and differences between aspects of content, when they describe their thinking mathematically and when they interpret mathematical information.

**Fluency**

Students develop skills in choosing appropriate procedures, carrying out procedures flexibly, accurately, efficiently and appropriately, and recalling factual knowledge and concepts readily. Students are fluent when they calculate answers efficiently, when they recognise robust ways of answering questions, when they choose appropriate methods and approximations, when they recall definitions and regularly use facts, and when they can manipulate expressions and equations to find solutions.

**Problem Solving**

Students develop the ability to make choices, interpret, formulate, model and investigate problem situations, and communicate solutions effectively. Students formulate and solve problems when they use mathematics to represent unfamiliar or meaningful situations, when they design investigations and plan their approaches, when they apply their existing strategies to seek solutions, and when they verify that their answers are reasonable.

**Reasoning**

Students develop an increasingly sophisticated capacity for logical thought and actions, such as analysing, proving, evaluating, explaining, inferring, justifying and generalising. Students are reasoning mathematically when they explain their thinking, when they deduce and justify strategies used and conclusions reached, when they adapt the known to the unknown, when they transfer learning from one context to another, when they prove that something is true or false and when they compare and contrast related ideas and explain their choices.

**Content Descriptions**

The mathematics curriculum includes content descriptions at each level. These describe the knowledge, concepts, skills and processes that teachers are expected to teach and students are expected to learn. However, they do not prescribe approaches to teaching. The content descriptions are intended to ensure that learning is appropriately ordered and that unnecessary repetition is avoided. However, a concept or skill introduced at one level may be revisited, strengthened and extended at later levels as needed.

- Whole School participation in the online Mathletics program
- Representation in a wide range of Mathematics Competitions such as ‘Have Sum Fun Online’ and Australian Mathematics Challenge
- World Maths Day at Apple iStore
- Family Maths Nights
- Whole School Numeracy Challenges